Hydrological Functionality of Plants
And its Application to
Stormwater/Wastewater Management

Anton Skorobogatov
Why Plants?

- Plants are unique living organisms that play a pivotal role in our environment.

- Plants are abundant and diverse. Over 90% of all visible living matter is plant life.

- Plants directly influence natural processes that are critical to life. These include the biogeochemical cycles of water, oxygen, carbon dioxide, and nutrients.

- Plants can have a pronounced impact on the hydrological cycle both directly and through their impact on soil properties.
There are three key aspects of hydrology that are plant-related:

1. Interception
2. Infiltration
3. Evapotranspiration
Infiltration

- Infiltration refers to water entering the soil from the soil surface.
- Soil texture is usually utilized to predict infiltration.
- Engineered coarsely textured soils are assumed to have high hydraulic conductivity.
- Hydraulic conductivity of native soils is a function of soil structure and porosity.

Soil Texture
- Clay: <0.002 mm
- Silt: 0.002-0.05 mm
- Sand: 0.05-2.00 mm

Soil Structure
- Granular
- Blocky
- Prismatic
- Columnar
- Platy
Soil Porosity

- There are two defined types of pores that exist in soils:
 - Micropores < 3mm
 - Macropores 3-100 mm

- Macropores make up 0.23 - 2% of total soil volume, yet can carry 74 - 100% of total infiltration flow

- Macropores can be formed by abiotic processes, such as soil freezing/thawing, wetting/drying, and cracking, or by living organisms
Plant Roots and Macropore Formation

- All plants form soil macropores as their roots proliferate.
- Roots physically penetrate the soil, and radial expansion of the roots compacts the soil in their immediate vicinity.
- Organic compounds are secreted from the plant roots into the surrounding soil and they bind soil particles together.
- Woody species produce macropores of high resilience due to the lignin lining.
- Plant roots transform the soil from a collection of particles into a network of stable channels, capable of carrying water to greater depths of soil profile.
A plant-induced increase in soil hydraulic conductivity has been demonstrated by agricultural studies.

Figure 1. Changes in infiltration rate under alfalfa culture with time
The Effect of Woody Species on Soil Hydraulic Conductivity

- Isolated anthropogenic woody vegetation plantings set within uniform soil and topography - shelterbelts, tree beds in urban parks, tree rows in urban golf courses

- Measure saturated soil hydraulic conductivity with Guelph Hydraulic Permeameter within the planting and compare it to the surrounding area
Guelph Hydraulic Permeameter

- Measures saturated soil hydraulic conductivity
- Constant level of water is maintained in the well by the vacuum inside the reservoir
- The steady-state discharge rate refers to the intrinsic properties of the soil and is independent of pre-existing soil moisture
- Less impacted by capillary forces than conventional ring infiltrometer
- More mobile and less invasive than double ring infiltrometer
Alberta Shelterbelt Nursery, Bowden

- Mixed Shelterbelt

- Salix sp.
- Syringa villosa
- Caragana arborescens
- Caragana arborescens
- Picea glauca
- Picea glauca
- Caragana arborescens
- Cotoneaster lucidus

N=1

<table>
<thead>
<tr>
<th>1 m</th>
<th>Salix sp.</th>
<th>Syringa villosa</th>
<th>Caragana arborescens</th>
<th>Caragana arborescens</th>
<th>Picea glauca</th>
<th>Picea glauca</th>
<th>Caragana arborescens</th>
<th>Cotoneaster lucidus</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm/hr</td>
<td>0.734</td>
<td>12.7</td>
<td>2.80</td>
<td>13.1</td>
<td>6.34</td>
<td>34.4</td>
<td>24.0</td>
<td>20.2</td>
</tr>
</tbody>
</table>

Glenmore Park Tree Beds, Calgary
Woody Vegetation and Soil Hydraulic Conductivity

Saturated Hydraulic Conductivity, mm/hr

- **tree stand**
- **control**

N=3

- Willow
- Poplar
- Larch
- Spruce
Plant physiology

- Root physiology dictates the nature of macropores that get formed by the plant.

- Grass roots are not capable of significant radial expansion, which would compact the surrounding soil.

- Roots of woody plants have an additional layer of complex organic polymer surrounding the root and making the resulting macropore more resilient.

- Deciduous woody species have short-lived roots, which would facilitate abundant macropores.

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Root longevity (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malus sp.</td>
<td>0.02 - 0.04, 0.2 - 0.26</td>
</tr>
<tr>
<td>Tsuga sp.</td>
<td>3.5</td>
</tr>
<tr>
<td>Pinus sp.</td>
<td>4</td>
</tr>
<tr>
<td>Prairie</td>
<td>4</td>
</tr>
</tbody>
</table>

Data from Waisel et al 1996
Evapotranspiration

- Deciduous species tend to have greater transpiration rates per leaf unit area

- Intrinsic transpiration rates are proportional to leaf conductance rates

- Leaf conductance rates are proportional to stomatal conductance rates

<table>
<thead>
<tr>
<th>Species</th>
<th>Transpiration rate (mm/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Poplar</td>
<td>2.3 - 3.5</td>
</tr>
<tr>
<td>Cottonwood/willow</td>
<td>4.8</td>
</tr>
<tr>
<td>Norway spruce</td>
<td>0.90 - 0.97</td>
</tr>
</tbody>
</table>

Data from Chang 2006

<table>
<thead>
<tr>
<th>Species</th>
<th>Transpiration rate (g/day/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Red Oak</td>
<td>1245</td>
</tr>
<tr>
<td>Yellow Poplar</td>
<td>976</td>
</tr>
<tr>
<td>Loblolly Pine</td>
<td>508</td>
</tr>
</tbody>
</table>

Data from Kramer and Kozlowski 2006
Evapotranspiration

- Plant water loss is usually restricted to stomata of plant leaves.
- Stomata usually occupy ~1% of leaf area, yet stomatal diffusion may be as high as 50% of open water evaporation.
- The size and number of stomatal openings determines hydraulic functionality of a particular plant.
Evapotranspiration

- Evapotranspiration refers to all the processes that transfer water from land to the atmosphere
- Water balance (Run-off, Precipitation, Storage)
- Energy balance (heat fluxes and radiation)
- Penman equation (Daily T, wind speed, humidity, and solar radiation)
- Refined by Monteith to include plant-specific parameters

<table>
<thead>
<tr>
<th>Land cover</th>
<th>Maximum leaf conductance, (mm/s)</th>
<th>Leaf area index</th>
<th>Vegetation height, (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conifer forest</td>
<td>5.3</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Broadleaf forest</td>
<td>5.3</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Grassland</td>
<td>8</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Tundra/non-forest wetland</td>
<td>6.6</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>Typical crop</td>
<td>11</td>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

data from Federer et al 1996
Rough Estimates based on available data

- Transpiration rates for some plants are known

- Using the LAI and Vegetation height as per land cover type

- Use variation in leaf conductance to compare intrinsic evapotranspiration efficiency of different plants

- Leaf conductance is highly dependent on stomatal pore index

- Can use ratio of stomatal pore index of a plant with known transpiration rate to calculate a coefficient to estimate transpiration rates of other plants

<table>
<thead>
<tr>
<th>Species</th>
<th>Transpiration rate (mm/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid Poplar</td>
<td>2.3 - 3.5</td>
</tr>
<tr>
<td>Cottonwood/willow</td>
<td>4.8</td>
</tr>
<tr>
<td>Norway spruce</td>
<td>0.90 - 0.97</td>
</tr>
</tbody>
</table>

Data from Chang 2006

<table>
<thead>
<tr>
<th>Land cover</th>
<th>Leaf area index</th>
<th>Vegetation height, (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conifer forest</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Broadleaf forest</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>Grassland</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Tundra/non-forest</td>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>Wetland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical crop</td>
<td>3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Data from Federer et al 1996
Stomatal Pore Index Variation

data from Sack et al 2003
Plant Hydraulic Conductance

- Hydraulic conductance of plants is linked to their leaf conductance.
- Another limitation may come from stem and root conductance.
- Ultimately, plants that are highly conductive to water have greater transpiration rates.
- Selecting plants with higher transpiration rates can allow to remove more water faster.
Absorptive Landscaping

- Man-made systems that rely on natural processes to manage water

- One of the main goals is to minimize surface run-off (Q)

- This goal is achieved by maximizing infiltration (I) and evapotranspiration (ET)

- Depressions containing highly permeable soils and vegetation – rain gardens, bioswales, bio-retention systems
Sediment Accumulation

- Maximizing infiltration is achieved by utilizing coarsely grained media.

- Over time fine particles originating from stormwater run-off accumulate on the surface of coarsely-grained filter media.

- Resultant surface sealing prevents water from entering the soil and leading to an overall decrease in hydraulic conductivity, infiltration rate and overall system functionality.
Plants to the Rescue

- Maximizing infiltration is achieved by utilizing plants that produce abundant and resilient macropores

- Over time fine particles originating from stormwater are incorporated into the media without sealing the surface

- Large woody plants appear to be more effective than small shrubs, forbs, or grasses

<table>
<thead>
<tr>
<th>Type of Vegetation</th>
<th>Kin (4 weeks), mm/hr</th>
<th>Kfinal (60 weeks), mm/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>199</td>
<td>53</td>
</tr>
<tr>
<td>Carex</td>
<td>251</td>
<td>51</td>
</tr>
<tr>
<td>Dianella</td>
<td>232</td>
<td>88</td>
</tr>
<tr>
<td>Microleana</td>
<td>150</td>
<td>49</td>
</tr>
<tr>
<td>Leucophyta</td>
<td>231</td>
<td>66</td>
</tr>
<tr>
<td>Melaleuca</td>
<td>155</td>
<td>295</td>
</tr>
</tbody>
</table>

Data from Custumer et al 2012
Water Quality

- Plants are also capable of nutrient uptake

- Vegetated treatments each had: Banksia – a shrub/tree, Bottlebrush – a shrub/tree, Flax Lily – a tufted small lily, Swamp Foxtail Grass – a tufted grass, 3 yrs old

- Best performance is seen when plant action is combined with finely grained soils

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Annual Load kg/ha·yr</th>
<th>Media type</th>
<th>Barren retention kg/ha·yr</th>
<th>Vegetated retention kg/ha·yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Phosphorous</td>
<td>1012</td>
<td>gravel</td>
<td>146</td>
<td>446</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sand</td>
<td>391</td>
<td>679</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loam</td>
<td>570</td>
<td>931</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gravel</td>
<td>-87</td>
<td>212</td>
</tr>
<tr>
<td>Nitrogen Oxides</td>
<td>639</td>
<td>sand</td>
<td>-165</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loam</td>
<td>-149</td>
<td>473</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gravel</td>
<td>72</td>
<td>435</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>1073</td>
<td>sand</td>
<td>125</td>
<td>545</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loam</td>
<td>197</td>
<td>816</td>
</tr>
</tbody>
</table>

Data from Lucas and Greenway 2008
Conclusions

- Vegetative proliferation improves soil structure and increases soil hydraulic conductivity.
- Woody species have a significantly greater impact on soil permeability as compared with herbaceous lawn grasses.
- Plants possess various hydraulic functionalities, and some are better at increasing soil hydraulic conductivity, as well as utilizing soil water.
- Plants can have a pronounced impact on nutrient removal.
- Plants are low-maintenance living instruments that should be utilized to manage water quantity and quality as well.
Thank You!

- Questions?

- Key references